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a b s t r a c t 

People’s activities in Online Social Networks (OSNs) have generated a massive volume of data to which 

tremendous attention has been paid in academia and industry. With such data, researchers and third- 

parties can analyze human beings’ behaviors in social communities and develop more user-friendly ser- 

vices and applications to meet people’s needs. However, often times, they face a big challenge of acquiring 

the data, as the access to such data is restricted by their collectors (e.g., Facebook and Twitter), due to 

various reasons, such as their user’s privacy. In this paper, we intend to shed light on leveraging limited 

local social network topological properties to effectively and efficiently conduct search in OSNs. The prob- 

lem we focus on is to discover the connectivity of a group of target users in an OSN, particularly from the 

perspective of a third-party analyst who does not have full access to the network. For the analyst, even 

discovering a user’s local connections requires issuing a query through OSN APIs (e.g., Facebook Friendlist 

API or Twitter Followerlist API). We develop searching techniques which demand only a few number of 

queries for the connectivity discovery. 

After conducting an intensive set of experiments on both real-world and synthetic data sets, we found 

that our proposed techniques perform as well as the centralized detection algorithm, which assumes the 

availability of the entire data set, in terms of the size of the discovered subgraph connecting all target 

users as well as the number of queries made in the search. The experiment results demonstrate the 

effectiveness of incorporating topological properties of social networks into searching in the OSNs. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

In the past decade, a large number of researchers have shown

heir interest in social networks. Particularly, they have been ded-

cated to designing algorithms to solve complex problems relevant

o the topological structures of graphs in massive social networks,

or example, community detection [1–5] , detecting subgraphs with

 given pattern [6] and sampling social network graphs [7] . Most

f them have researched the problems assuming the availability

f the entire network graph, which, however, is not realistic of-

en times considering the API restrictions set by OSN operators for

hird parties to access the date they collected. Therefore, in recent

ears, more attention has been paid to leveraging local information

nd designing distributed algorithms [8–13] to solve the algorith-

ic issues in massive OSNs. 

Our work in this paper considers the problem of discovering

arget users’ connectivity in an OSN, particularly from the perspec-
∗ Corresponding author. 
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ive of a third-party analyst who does not have a full view of the

elationship graph of the social site. As a motivating example, con-

ider that a person plans to organize a successful party/workshop,

here the success is subject to three constraints: (1) a list of peo-

le must be invited to the event (i.e., target people); (2) all tar-

et participants should be acquainted with each other directly or

hrough people who need to be invited additionally; and (3) the

umber of people additionally invited should be minimized due to

ome reasons, such as budget or space limit. 

To solve this problem, we first need to find the information

hat can be used to measure people’s acquaintance. Thanks to the

evelopment of web techniques, OSNs have attracted millions of

sers and collected a large amount of data from the users, includ-

ng their friendship information, such as friendship on Facebook

nd following relationship on Twitter. Such relationship informa-

ion indicates users’ acquaintance and can be used to present a

elationship network in the OSN. 

For an OSN operator who has a view of the entire relationship

etwork, it is easy to find out the minimum subgraph that con-

ects all target people. In fact, similar subgraph detection prob-

ems have been studied in the domain of graph mining and graph

https://doi.org/10.1016/j.osnem.2020.100062
http://www.ScienceDirect.com
http://www.elsevier.com/locate/osnem
mailto:nali@pvamu.edu
mailto:sdas@mst.edu
https://doi.org/10.1016/j.osnem.2020.100062
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theory, varying from detecting a subgraph simply connecting a tar-

get group of people to finding a more complex one with specific

restrictions on the graph size or density [14–19] . Most of the tech-

niques developed in the literature were designed with the assump-

tion of the availability of the entire graph. However, such an as-

sumption is a profound limit for a third-party analyst, as they do

not have the full access to the data. Therefore, the existing tech-

niques are not applicable to our detection problem. 

Solving this problem is challenging for two reasons. First, in

an OSN, the information that a third-party analyst can use is lim-

ited. The analyst can gather some data either by visiting individual

usersâ profile pages or by sending queries through OSN APIs. What

he can see is local to the visited or queried users. Second, even

discovering such local information demands effort. One can write

script to crawl the web site to collect such data; however, inten-

sively querying the OSN may cause the server to get overwhelmed.

This is why many OSNs limit the number of web queries from the

same IP address or a particular group of IP addresses per day. Due

to the restriction, gleaning a large number of friendlists is time-

consuming. Therefore, a third-party analyst needs less-cost search

techniques. The contribution of this paper can be summarized as

follows: 

• We propose a novel subgraph detection problem for OSNs from

the perspective of a third-party analyst. We intend to discover

a small subgraph which covers all target users with a few num-

ber of OSN API queries. 

• We design searching techniques which consist of online and of-

fline phases to detect the desirable subgraph. Particularly, we

integrate some well-known topological properties of social net-

works in the online searching, including small-world, power-

law distribution of node degrees and the well-connectivity of

high-degree nodes. 

• We conduct an intensive set of experiments on both synthetic

and real-world social networks to evaluate the performance of

our techniques. Our finding is that the users on the OSNs are

connected very well. Additionally, we can discover the connec-

tivity of any group of arbitrarily selected nodes in an OSN with

a small number of queries. Our experiment results also demon-

strate the effectiveness of applying the topological properties of

social networks to searching in OSNs. 

The roadmap of this paper is outlined as follows. Section 2 in-

troduces preliminaries including the topological properties

of social networks, system model and problem definition.

Sections 3 and 4 address the two phases of our proposed

searching techniques, online searching and offline, respectively.

Section 5 discusses the experimental study. Section 7 introduces

the related work, followed by a conclusion in Section 8 . 

2. Preliminaries 

2.1. Topological properties of social networks 

Through many years of research in social networks, researchers

have detected some important topological properties of social net-

works after conducting a large number of experiments and ana-

lyzing a myriad of real-world data sets. Some of these properties

are well-known, like small-world, scale-free and well-connectivity

among high-degree nodes. 

2.1.1. Small-world property 

Small-world is one of the well-known social network topolog-

ical properties, which is also translated into “six degrees of sep-

aration.” It was first observed through a series of experiments

conducted by Stanley Milgram and his coworkers in the 1960’s

[20–22] . This property causes the small diameter of social net-
orks and ensures the existence of a short path between any pair

f nodes in the social network graphs. 

.1.2. Scale-free property 

A scale-free network has a power-law degree distribution, at

east asymptotically. That is, the fraction P ( x ) of nodes in the net-

ork with x direct neighbors for large values of x is given as

 (x ) ∼ x −α, where α is a constant typically in the range 2 < α < 3.

t means only a small number of nodes have very large degrees.

he power-law degree distribution has been observed from many

xperiments over large-scale social networks. 

.1.3. Well-connectivity among high-degree nodes 

Several literature, such as [23] , have addressed the assorta-

ivity of social networks, indicating that nodes with similar de-

rees are more likely connected with each other. Particularly, the

ork [24] has discovered that the high degree nodes form a well-

onnected core from a large set of experiments on real-world data

ets. In Theory 1 , we prove that given two nodes, as their degrees

ncrease, the probability of them being connected also increases.

oreover, we conducted an intensive set of experiments on real-

orld data sets to analyze the connectivity among nodes of high

egree, which will be detailed in Section 5 . Our experiment result

s consistent with the finding in the work [24] . 

heorem 1. Given an undirected graph of n nodes and two nodes, v a 
nd v b , with degrees d a and d b respectively, suppose n-1 other nodes

ave the same probability of connecting with v a ( v b ), then the prob-

bility of having an edge between v a and v b (P ab ) increases with d a 
nd d b . 

roof. P ab can be calculated with Equation 1 . The numerator

hows the number of the cases where the two nodes have a con-

ection while the denominator shows all possible cases. If the two

odes have a connection, for node a , we choose d a − 1 out of n − 2 ,

xcluding node a and node b (i.e., 
(

n −2 
d a −1 

)
) from n nodes, and we

erform the same calculation for node b (i.e., 
(

n −2 
d b −1 

)
). Their multi-

lication covers all cases where nodes a and b are connected. 

If the two nodes do not have a connection, for node a , we

hoose d a out of n − 2 nodes, excluding node a itself and node b

i.e., 
(

n −2 
d a 

)
) from n nodes, and we do the same for node b (i.e.,

n −2 
d b 

)
). The multiplication of the two values gives us the possible

ases when the two nodes are not linked together. 

From the Eq. (1) , we can see that as d a and d b increase, P ab also

ncreases. �

 ab = 

(
n −2 
d a −1 

)(
n −2 
d b −1 

)

(
n −2 
d a 

)(
n −2 
d b 

)
+ 

(
n −2 
d a −1 

)(
n −2 
d b −1 

)

= 

1 

1 + 

( n −2 
d a ) ( 

n −2 
d b 

) 

( n −2 
d a −1 ) ( 

n −2 
d b −1 ) 

= 

1 

1 + 

(n −d a −1)(n −d b −1) 
d a d b 

(1)

.2. System model 

Although most OSNs provide all kinds of user relationship infor-

ation, for example, friendship or dating relationship, we consider

nly friendship in this paper. Additionally, we do not quantify the

trength of the friendship between users. Therefore, we can use an

ndirected and unweighted graph, G ( V , E ), to model the friendship

etwork of an OSN, where the node set V represents users and the

dge set E denotes the friendships among users. Given the graph
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Fig. 1. The procedure of querying nodes on an OSN. 
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odel, querying a node’s friendlist can be modeled as discovering

ts neighboring friends which we call “local view”. The number of

 node’s neighbors is denoted as its degree. 

With the local-view discovery model, we can detect the sub-

raph we search for by sending a sequence of queries to the OSN.

e keep track of not only nodes already queried but also a list of

andidate nodes we may choose to query next. A node is called a

andidate if it has not yet been queried but it has been discovered

n the local view of a queried node. As more nodes are queried, our

iew in the OSN graph grows. Fig. 1 illustrates a generic querying

rocedure, where blue dots represent nodes we have queried while

hite ones are candidate nodes discovered already. 

.3. Problem definition 

We name our problem Local-view based Mininum Subgraph

etection problem (LMSD), as defined in Problem 1 . Note that the

MSD problem requires both the size of the detected subgraph and

he number of queries be minimized, which, however, is hard to

chieve at the same time. To cope with this challenge, we heuris-

ically interpret the problem and break it down to two phases. We

rst conduct online search with a few number of queries to find a

onnected subgraph which covers all target nodes, and then in the

etected subgraph we intend to discover the minimum subgraph

hich keeps all target nodes connected. The rationale of the effec-

iveness of our interpretation in solving the LMSD problem is if the

umber of nodes queried in the first phase is small, the size of the

nally detected subgraph should not be very large. 

roblem 1. Local-view based Minimum Subgraph Detection

LMSD): Given a set of target nodes S 0 in a graph, G ( V , E ), the full

opology of which is unknown initially, find the minimum number

f nodes from V �S 0 to make all target nodes connected with the

inimum number of node queries for local-view discovery. 

Given the subgraph discovered in the first phase, we name the

inimum subgraph detection problem in the second phase the

entralized Minimum Subgraph Detection problem (CMSD). The

MSD problem is defined as given the entire graph and a group

f target nodes, we look for the minimum number of extra nodes

o connect all of the target nodes together. The CMSD problem is

 hard problem as proved in Theorem 2 below. The complexity

f the CMSD indirectly indicates the hardness of the LMSD prob-

em, because the former is part of the latter. Based on our two-

hase based interpretation, we will first discuss how to detect the

onnectivity of target nodes via a few number of online queries

n Section 3 and then talk about algorithms to discover a smaller
onnected subgraph offline from the data collected in the previous

hase. 

heorem 2. The Centralized Minimum Subgraph Detection problem

CMSD) is NP-hard. 

roof. We will prove the NP-hardness of CMSD by a reduction to

he Steiner Tree problem (ST). The definition of ST is: Given an

nweighted graph G and a set of nodes V t in it, find a tree with

inimum number of edges in G , which make any two nodes in V t 

eachable to each other either directly or indirectly via other nodes

n G . As is well known, the ST problem is NP-hard [25] . The deci-

ion version of ST is that given an unweighted graph G ( V , E ), a set

f nodes V t ⊆V and an integer k , we are looking for a tree which in-

olves all nodes in V t and contains at most k edges from E . The de-

ision version of CMSD problem is that given an unweighted graph

 

′ ( V 

′ , E ′ ), a set of nodes V ′ t ⊆ V ′ and an integer k ′ , we are searching

or a subgraph of G 

′ which includes all nodes in V ′ t and covers at

ost k ′ nodes from V ′ \ V ′ t . 

Now we will demonstrate that there is a solution for ST if and

nly if there is a solution for CMSD. Evidently, the nodes in any

teiner tree with at most k edges will be the solution of CMSD,

here k ′ = k + 1 − | V t | . On the other hand, any spanning tree of

he subgraph found in CMSD will form a steiner tree with at most

 

′ + | V ′ t | − 1 edges. Here the spanning tree is referred to as a tree

omposed of all the nodes and some (or perhaps all) of the edges

f a given graph. Therefore, the CMSD problem is NP-Hard. �

. Online searching 

In the online searching, we intent to discover a subgraph in the

SN to connect all target nodes with a few number of queries. The

raditional graph searching techniques, such as Depth First Search

DFS) or Breadth First Search (BFS), can be applied as the brute-

orce subgraph detection techniques; however, their cost on in-

ividual queries is non-trivial without knowing the topology of

he entire OSN graph. Therefore, we aim to design more efficient

earching techniques to discover the connectivity of the targets. 

.1. The starting point of search 

Without any prior knowledge, searching from the target nodes

s a reasonable starting point. After we query all target nodes, each

f them and its neighbors discovered through the OSN API form

 subgraph. These subgraphs are most likely disjoint due to the

tructural sparsity of social networks. Each of these subgraphs has

ts own node candidate set for further queries. The candidate set of

 subgraph initially contains only the neighbors of its target node,

ut it grows as more nodes are queried. 

Given the scattered subgraphs, efficiently discovering the con-

ectivity of target nodes requires merging all of these subgraphs

uickly by querying a small number of nodes. One can see that

n order to solve this problem, the selection of nodes to query is

ritical. In the following subsections, we will define two criteria to

valuate the importance of a node in the online searching. 

.2. The evaluation of node candidates 

In a dense graph (| E | � | V |), it’s straightforward to pick a good

ode candidate for query. Basically, a node which can make more

arget nodes accessible to each other should be selected. However,

uch a criterion is not sufficient to determine a candidate node in

 sparse graph, such as social network graphs, and may even lead

o the failure of the search process. The reason is that in a sparse

raph more likely none of the node candidates can directly im-

rove the reachability of target nodes. Therefore, we need a new
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Fig. 2. An example of the inefficiency of UMS. 
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criterion to evaluate a node’s capability of merging the subgraphs

associated with target nodes. 

Inspired by the critical role of high-degree nodes in searching

on social network graphs [26,27] , we prioritize node candidates

of high degree for query in the online searching. However, often

times, the real degree of a node candidate is unknown until we

query it. Considering the query restriction, we propose two ap-

proaches to estimate the degrees of node candidates. 

(1) Pre-Degree. A node’s pre-degree is the number of the node’s

neighbors which have been discovered in online searching upon to

a time point. An example is illustrated in Fig. 1 . In this snapshot

of our search, the pre-degree of node 3 is two at that time point,

as we only see its connections with node 1 and node 2. As more

nodes are queried, we may discover more connections of node 3,

which causes its pre-degree to increase accordingly. 

We use a node’s pre-degree to estimate its real degree. The ra-

tionale is that since social network graphs have power-law degree

distributions, if we see a node has a very high pre-degree, the real

degree of that node will probably be high as well. However, this

may not always be accurate when a node’s pre-degree is low. 

(2) Creation Time. The time a user created his/her account in

the OSN is also useful to infer its real degree in the OSN graph.

The rationale came from the Barabasi-Albert(BA) model [28] , which

is a well-known model for generating random scale-free networks

using a preferential attachment mechanism. In this model, new

nodes are added to the network one at a time. Each new node

is connected to existing nodes with a probability that is propor-

tional to the number of links that the existing nodes already have.

This tells us it’s highly likely that the earlier a node (e.g., a user

account) was created in the social network, the higher degree the

node has, which is also addressed in the paper [29] . 

In most of the OSNs, although the account creation time is

available on the user’s profile web page, we have to issue a query

to retrieve that information. However, we notice that on some

OSNs, like Twitter, users’ numeric IDs are assigned sequentially. A

smaller user ID indicates the earlier creation time of that user’s ac-

count. Therefore, from the follower list returned from the Twitter

API, we can see which candidate node was created earlier so as to

prioritize it for query. 

3.3. Algorithmic techniques for online search 

We propose two online search techniques for detecting the con-

nectivity of target nodes with a few number of queries, called Un-

balanced Multiple-Subgraph Searching (UMS) , and Balanced Multiple-

Subgraph Searching (BMS) , respectively. We break each query step

down into two phases, first to decide which target node’s subgraph

to choose and second to decide which node from the candidate set

of the subgraph to query. The difference of the two techniques is in

the subgraph selection. In order to evaluate a subgraph, we define

subgraph degree in Eq. (2) as the maximum (estimated) degree of

nodes in the subgraph, where the nodes include not only already

queried nodes but also the ones in the candidate set, and D ( u ) rep-

resents the estimated degree of u in the subgraph. 

DSub(i ) = max ({ D (u ) | u ∈ subgraph (i ) } ) (2)

3.3.1. Unbalanced Multiple-Subgraph Search (UMS) 

The basic idea of UMS is to prioritize not only high-degree

nodes but also high-degree subgraph to query in the online search.

The UMS technique consists of three steps: (1) query all of the tar-

get nodes in the OSN graph and form their subgraphs individually;

(2) select the subgraph with maximum subgraph degree as the tar-

get subgraph ; and (3) query the node in the candidate set of the

target subgraph which has the largest degree. The node degree can

be estimated in terms of either of the two criteria, the pre-degree
r the creation time, as we discussed earlier. A tie will be broken

rbitrarily. The Steps 2 and 3 will be repeated until the subgraphs

f all target nodes are merged together. 

Note that after querying a node, the target subgraph and its

ode candidate set will be updated according to the list of newly

iscovered nodes returned from the query. If the query causes any

verlap between the target subgraph and another subgraph, they

ill be merged together. Specifically, their sets of node candidates

nd of nodes already queried will be merged respectively. We call

his scheme Unbalanced Multiple-Subgraph Search as we realize

hat once the target subgraph is determined at the beginning of

he search, it will never be changed. This observation is proved in

roperty 1 . 

roperty 1. With UMS, the target subgraph will never be changed

nce it is picked at the beginning of the search. 

roof. Based on the definition of the target subgraph, a subgraph

s selected as the target subgraph if it has the maximum degree,

hich is evaluated by the largest degree of the nodes in that sub-

raph. After we query one node, the largest degree can only be

ncreased, regardless of whether it’s evaluated by the pre-degree

r the creation time (or user id). Therefore, the previously picked

arget subgraph will still have the largest degree among all of the

ubgraphs, thereby always being the target subgraph. �

An example is illustrated in Fig. 3 . After querying nodes, v 1 , v 2 
nd v 3 , three subgraphs, Subg 1 , Subg 2 and Subg 3 , are correspond-

ngly formed with degrees two, one and three, separately. Based on

he maximum degree rule in the UMS searching, Subg 3 is chosen

s the target subgraph. v 4 is randomly selected as the first node

o query from the candidate set of Subg 3 as there are three node

andidates having the same degree. Then, v 5 becomes the candi-

ate with the highest pre-degree in Subg 3 , therefore, we query v 5 ,
hich leads to the merging of Subg 2 with Subg 3 . The search con-

inues by querying nodes selected from the candidate set of Subg 3 
ntil Subg 1 is also merged with Subg 3 . 

.3.2. Balanced Multiple-Subgraph (BMS) 

The inspiration in designing BMS came from our concern over

he efficiency of searching with UMS. One can see that essentially

MS prioritizes high-degree nodes in the search, which may not be

ble to efficiently reach out to the target nodes of low degrees. For

xample, in Fig. 2 the subgraphs initialized with the low-degree

arget nodes can do nothing but waiting the target subgraph to

each out to them. However, since the high-degree nodes in social

etworks are well connected as we introduced in Section 2 , if we
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Fig. 3. The example of using UMS technique. 

Fig. 4. The example of using BMS technique. 
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ould reduce the degree difference among the subgraphs by prior-

tizing the subgraphs of low degrees in searching, the procedure of

erging subgraphs may perform faster. 

Algorithm 1: The Framework of Our Online Searching Tech- 

niques 

Input : Set of target nodes, T S, and an oracle of querying 

nodes in the OSN 

Output : A connected subgraph covering all nodes in T S 

foreach Node v i in T S do 

subgraph( i ) = Query( v i ); 
list .add(subgraph( i )); 

while list.size != 1 do 

t sg = SelectTargetSubgraph( list ); 

tn = SelectNode( tsg); 

subgraph( t sg).add(Query( t n )); 

if CheckOverlap( list, tsg) then 

Merge( list , t sg); 

foreach Node candidate v m 

in tsg do 

Update( D (v m 

) ); 

Algorithm 2: Selection Target Subgraph for UMS 

Input : List of subgraphs sg 1 , sg 2 , …, list 

Output : The target subgraph 

tsg = sg 1 ; 

foreach sg i in list do 

if DSub( sg i ) > DSub( tsg) then 

tsg = sg i ; 

return tsg; 

Algorithm 3: Selection Node For UMS and BMS 

Input : Target Subgraph, tsg 

Output : The node to query 

NC = tsg.nodecandidates; 

tn = v 0 in NC; 

foreach Node i in NC do 

if D( i ) > D( tn ) then 

tn = v i ; 

return tn ; 

Inspired by this idea, we design the BMS search scheme which

lso consists of three steps: (1) query all target nodes in the OSN

raph and form individual subgraphs; (2) select the subgraph with

he minimum subgraph degree as the target subgraph ; and (3)

uery the highest-degree node from the candidate set of the tar-

et subgraph (break ties arbitrarily). The Steps 2 and 3 will be re-

eated until the subgraphs of all target nodes are merged together.

imilar to UMS, if a query with BMS causes any subgraphs to over-

ap, they will be merged and the degree of the target subgraph

ill be updated accordingly. Therefore, the previously picked tar-

et subgraph may not be selected for the next query if its degree

oes not remain the minimum among all the subgraphs. 

Unlike UMS, BMS focuses on low-degree subgraphs in our

earching. Therefore, we call this technique Balanced Multiple-

ubgraph Searching. Let us run BMS on the simple example we

sed before for UMS, as shown in Fig. 4 . Initially, the subgraphs
ormed by querying target nodes have degrees two, one and three.

ince Subg 2 has the minimum degree, it is defined as the target

ubgraph in the first query. Then the only node candidate in Subg 2 ,

 4 , is queried, which causes the merging of Subg 2 and Subg 3 . The

ewly merged subgraph has degree of three, which is larger than

he degree of Subg 1 , therefore, the target subgraph is reassigned

ith Subg 1 . In Subg 1 , v 5 is selected to query, which grows Subg 1 
nd increases its degree to four. At this point, the target subgraph

ill be reassigned again. The search continues until all subgraphs

re merged. 

Algorithm 4: Selection Target Subgraph for BMS 

Input : List of subgraphs sg 1 , sg 2 , …, list 

Output : The target subgraph 

tsg = sg 1 ; 

foreach sg i in list do 

if DSub( sg i ) < DSub( tsg) then 

tsg = sg i ; 

return tsg; 

Here we want to emphasize the unique topological properties

f social networks used in design of BMS, which ensure the effi-
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Table 1 

Largest component from data sets for our experiments. 

Date Sets Nodes Edges LC(V, E) C 

Slashdot 82168 504230 (82168,504230) 1 

Gowalla 196591 950327 (196591,950327) 1 

Brightkite 58228 214078 (56739,212945) 547 

Facebook 63731 817090 (63392,816886) 144 

Synthetic 80000 1999375 (80000,1999375) 1 
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ciency of merging the subgraphs of target nodes in the OSN. First

of all, based on the literature [27] , we know that high-degree node

based search can reach nodes of the highest degree with about

O (n 
γ −2 
γ −1 ) steps in social network graphs, where γ is the exponent

of the power-law distribution, and n is the number of nodes in

the networks. Therefore, in our search, each subgraph will reach

node of the highest degree with a few steps of searching. Sec-

ond, because of the limited number of nodes of the highest de-

grees in scale-free social networks, searching multiple subgraphs

along high-degree nodes will let the subgraphs grow towards the

nodes of the highest degrees and merge together. Third, due to the

well-connectivity among high-degree nodes, balancing the search

to prioritize low-degree subgraphs will speed up the merging of

subgraphs associated with target nodes. Incorporating all of these

topological properties in design of BMS ensures its efficiency of

searching. 

4. Offline detection 

In the offline detection phase, we aim to find a smaller sub-

graph from the subgraph discovered in the online searching which

can maintain the connectivity of all target nodes. Considering the

association between the CMSD problem and the Steiner Tree prob-

lem (ST) as we discussed in Section 2 , we apply a classic approxi-

mate ST algorithm [30] to detect a smaller subgraph in the offline

detection phase. 

There are two main reasons for us to apply the ST algorithm

[30] . First, it can guarantee the size of the detected subgraph is

no larger than 2(1 − 1 /� ) times the size of the optimal subgraph,

where � is the number of leaves in the optimal tree. Second, it runs

faster with the time complexity | S 0 || V | 2 , which is a critical concern

when running algorithms on large-scale OSN data sets. 

Given an undirected and unweighted graph G ( V , E ) and a set

of target nodes S 0 ⊆V , there are four steps to find a heuristic min-

imum steiner tree in [30] : (1) construct the complete undirected

graph G 1 ( V 1 , E 1 ) by creating an edge between each pair of nodes

in S 0 with a label of the length of their shortest path on G ; (2)

find the minimal spanning tree T 1 of G 1 ; (3) construct a sub-

graph G s of G by replacing each edge in T 1 by its correspond-

ing shortest path in G ; and (4) find the minimal spanning tree

T s of G s . Delete from T s edges with leaves which are non-steiner

points. 

5. Experimental study 

To evaluate the performance of our techniques in solving the

LMSD problem, we conducted experiments not only on large-scale

real-world data sets but also on a synthetic data set. In the fol-

lowing subsections, we will first introduce the data sets used in

the experiments and analyze their topological properties, including

the degree distribution and the connectivity of high degree nodes.

Then, we will evaluate the two steps in making each query with

our techniques – picking a target subgraph first and then choosing

a node to query. 

Additionally, we implemented a variation of Breath First Search

(BFS) [31,32] : place all targets in a queue first, and then query

each node in the queue and enqueue its neighbors accordingly un-

til all targets are reachable to each other. The BFS was proposed

in [31,32] to crawl the OSN to collect data for OSN analysis, such

as estimating any user property and some topological properties.

Although BFS was not particularly designed to solve our problem,

since it’s a well-know approach to collect data in OSNs, we tailored

it and use it as a benchmark for comparison purpose. 
.1. Data sets 

We used four real-world data sets and one synthetic data set

n our experimental study. All real-world data sets excluding Face-

ook [33] can be downloaded from the repository [34] . 

(1) Facebook data set [33] : The data was crawled from Face-

ook.com, capturing the friendship between users, which can be

odeled as an undirected graph. 

(2) Slashdot data set [35] : The data contains the friend/foe links

etween the users of Slashdot. The data set does not distinguish

riendship from foeship between users. The links in the original

et are directional, We converted the Slashdot data set to an undi-

ected graph for our experimental study. Specifically, if there is

riginally one edge between two nodes, regardless of their direc-

ion, we correspondingly create an edge between the nodes in the

ndirected graph. 

(3) Gowalla data set [36] : Gowalla is a location-based social

etworking web site where users share their locations by checking

n. The data collected from Gowalla present the friendship network

hich is undirected. 

(4) Brightkite data set [36] : Brightkite was once a location-

ased social networking service provider where users shared their

ocations by checking-in. The friendship network is originally di-

ected, but we have constructed a network with undirected edges

henever there is a friendship regardless of the direction. 

(5) Synthetic data set: We generated a random graph using the

arabasi-Albert preferential attachment model [28] . In the model,

 graph of n nodes is grown by attaching new nodes each with m

dges that are preferentially attached to existing nodes with high

egree. We set n = 80 0 0 0 and m = 25 to generate our synthetic set

hich has a size similar to the size of Facebook data set. 

As we study on how to connect a group of nodes together on

n OSN, we need to ensure all the target nodes are indeed reach-

ble to each other in the OSN graphs, which means the undirected

nput graphs should be connected. Therefore, we preprocessed the

riginal data sets by extracting the largest connected component

rom each of them. In Table 1 , we list the numbers of edges, nodes,

nd components (i.e., C ) as well as the size of largest component

i.e., LC ( V , E )) in each original data set. In our experiments we used

he largest connected components as the input graphs for evaluat-

ng our algorithms. 

.2. Topological properties of data sets 

We examined some topological properties of our data sets

hich we introduced in Section 2 , including power-law degree dis-

ribution and the well connectivity of high-degree nodes. 

.2.1. Power-law degree distribution 

We applied the statistical framework for discerning and quan-

ifying power-law behavior in empirical data proposed in [37] to

heck the degree distribution of our data sets. We ran the frame-

ork program [38] on our data sets. In power-law distribution,

 (x ) ∼ x −α, α is known as the exponent or scaling parameter,

hich typically lies in the range 2 < α < 3. More often the power

aw applies only for values greater than some minimum xmin . In

uch cases we usually say that the tail of the distribution follows
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Table 2 

Fitting the power-law distribution to empirical data. 

Date Sets Slashdot Gowalla Brightkite Facebook Synthetic 

alpha 3.46 2.83 2.56 4.44 2.99 

xmin 219 95 24 157 47 

Table 3 

Subgraphs of high-degree nodes. 

≥ Degree 100 200 300 400 500 600 

Facebook nodes 3307 461 106 46 26 11 

Components 1 1 1 1 1 2 

Average Distance 2.61 2.26 1.98 1.68 1.70 1.58 

Slashdot nodes 1916 757 235 115 61 39 

Components 1 2 2 1 3 3 

Average Distance 2.11 2.0 1.91 1.92 2.01 2.26 

Gowalla nodes 1787 494 245 143 99 77 

Components 1 1 1 1 1 1 

Average Distance 2.32 1.96 1.82 1.70 1.63 1.58 

Brightkite nodes 408 89 30 14 9 7 

Components 1 1 1 1 1 1 

Average Distance 2.29 1.95 1.88 1.78 1.67 1.71 

Synthetic nodes 5181 1348 592 348 240 169 

Components 1 1 1 1 1 2 

Average Distance 2.61 2.26 1.98 1.68 1.70 1.58 
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Fig. 5. Facebook: Queries - NS. 

Fig. 6. Slashdot: Queries - NS. 

Fig. 7. Gowalla: Queries - NS. 
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 power law. Therefore, we checked the values of the two param-

ters, α and xmin , for all of our data sets and the results are listed

n Table 2 . 

.2.2. Connectivity of high-degree nodes 

To evaluate the connectivity of high-degree nodes in our data

ets, we first extracted the subgraph formed by nodes with a

egree more than a threshold and the edges among them. The

hreshold ranges from 100 to 600 in increments of 100. We ana-

yzed the number of the connected components and the average

ength of the shortest paths (i.e., distance) between any pair of

eachable nodes in each extracted subgraph. In calculating the av-

rage distance, if an extracted subgraph has more than one com-

onent, we calculated the average distance in each component first

nd then average them. 

From Table 3 , we can see that although the number of nodes

ecreases as the degree threshold goes up, the nodes of high de-

ree are still connected well. Furthermore, the average distance

etween any reachable pair of nodes is about 2, as shown in

able 3 . These results demonstrate the well-connectivity among

igh-degree nodes in our OSN data sets. 

.3. The evaluation of techniques 

We conducted multiple groups of experiments with each data

et by varying the number of selected target nodes, ranging from

0 to 100 in increments of 20. Furthermore, given a specific num-

er of target nodes, we ran 100 rounds of experiments by select-

ng target nodes uniformly at random. The same set of targets

ere used to compared different strategies. As we discussed in

ection 3 , there are two steps in the online searching, choosing the

arget subgraph first and then selecting a node to query. Therefore,

e evaluate these two steps, respectively. In addition, we com-

ared one of our searching techniques with two other landmark

olutions for graph searching. One is a variation of Breadth First

earch (BFS) which starts from multiple target nodes, and the other

s to randomly choose the target subgraph first and then randomly

elect a node from the subgraph to query, which is therefore called

oubleRandom solution. 
.3.1. Node selection (NS) 

In this group of experiments, we used the balanced subgraph

election strategy which targets the subgraph with the lowest de-

ree and evaluated different node selection strategies, including

re-degree based strategy (BalancedPreD), real-degree based strat-

gy (BalancedRealD) as well as the strategy of randomly selecting

ext node for query (BalancedRand). Additionally, for the synthetic

ata set, we implemented the creation-time based strategy (Bal-

ncedCreaT). Since the synthetic data set was generated with the

arabasi-Albert preferential attachment model [28] , the nodes with

maller ids were created earlier. Therefore, the node ids signify the

rder of user account creations, which is the other way we pro-

osed in Section 3 to estimate node degrees. We evaluated these

ode selection strategies in terms of the number of online queries

nd the number of extra nodes selected in the offline detection

or reaching nodes connectivity. We validated whether high-degree

odes are good choice for search and verified the goodness of us-

ng pre-degree and creation time to estimate the real degree of a

ode candidate. 

In terms of the number of queries displayed in Figs. 5–9 , we can

ee: (1) BalancedRealD outperforms the others. In the real world,

ome online social networks, like Linkedin.com, do provide the

umber of connections of neighboring nodes without additional
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Fig. 8. Brightkite: Queries - NS. 

Fig. 9. Synthetic: Queries - NS. 

Fig. 10. Synthetic: Extra Nodes - NS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Facebook: Extra Nodes - NS. 

Fig. 12. Slashdot: Extra Nodes - NS. 

Fig. 13. Gowalla: Extra Nodes - NS. 

Fig. 14. Brightkite: Extra Nodes - NS. 
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query effort. (2) BalancedCreaT performs better than BalancedPreD,

and does as well as BalancedRealD for most of the experiments.

(3) BalancedPreD and BalancedRandom issued a similar number of

queries in the online search. At first glance, the 3rd observation is

unexpected. But we believe it is because we applied balanced sub-

graph search for both strategies, which predominates the search

process regardless of the node selection. In order to verify this

thought, we ran another group of experiments on real-world data

sets with UnbalancedRand - sticking with the subgraph of highest

degree but randomly selecting node to query from the subgraph.

The result is that all online search failed due to not being able to

achieve the targets connectivity with queries less than 10 times of

the number of targets, which we set as a termination condition. 

In terms of the number of extra nodes needed for connect-

ing targets presented in Figs. 10–14 , we can observe that: (1)

BalancedRealD outperforms the others. (2) When comparing

the local-view based strategies with Central which assumes the

availability of the entire data set, their results are comparable,

and sometimes, local-view based strategies perform better than

Central. This is because Central is an approximate algorithm rather

than the optimum one, as discussed in Section 4 . (3) Balanced-

CreaT performs similarly to BalancedRealD in the synthetic data
et. (4) BalancedPreD performs a little better than BalancedRand,

eeding less number of nodes for making targets reachable. 

.3.2. Subgraph selection (SS) 

In order to evaluate subgraph selection techniques, we imple-

ented the unbalanced subgraph selection (UMS), and the bal-

nced subgraph selection (BMS). The UMS always targets the sub-

raph with the largest degree, while the BMS always chooses the

ubgraph with the lowest degree. In this group of experiments,
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Fig. 15. Percentage of Failures - BFS. 

Fig. 16. Percentage of Failures - UnbalancedReal. 

Fig. 17. Facebook: Queries - SS. 
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Fig. 18. Slashdot: Queries - SS. 

Fig. 19. Gowalla: Queries - SS. 

Fig. 20. Brightkite: Queries - SS. 

Fig. 21. Synthetic: Queries - SS. 
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e applied the real degrees of nodes for node selection aiming at

liminating the impact of node section on evaluating the perfor-

ance of subgraph selection techniques. After running some ex-

eriments, we realized that the number of queries issued with

MS is about two times of the number of targets; however, UMS

ay search through a large portion of the data set to complete the

nline search. Therefore, for UMS, we set a termination condition:

f the number of queries issued is more than 10 times of the num-

er of targets, we will terminate the search. 

In Figs. 17–21 , we can see: (1) Except for the synthetic data set,

alancedRealD requires much less number of queries to reach the

onnectivity of targets than UnbalancedReal does. (2) For the real-

orld data sets, the number of queries issued with UnbalancedReal

eaches almost 10 times of the number of targets. This is because

ost of the experiments with UnbalancedReal were terminated by

he condition we set and failed to achieve the connectivity of tar-

ets as displayed in Figs. 15-16 . 

In Figures 22–26 , we can observe: (1) For the real-world data

ets, BalancedRealD performs as well as the Central, and even bet-

er in some cases. (2) Since UnbalancedReal failed to achieve con-

ectivity in the real-world data sets, its result was not displayed

xcept for some cases where the online searching successfully dis-
overed the connectivity of targets. (3) For the synthetic data set,

he performance of BalancedRealD and UnbalancedReal are similar.

.3.3. Comparison with landmarks 

In this group of experiments, we evaluated BalancedRealD more

y comparing it with Breath First Search (BFS) and randomness

ased search. The BFS begins with all targets and then queries their

eighbors, so on and so forth. We implemented the randomness

ased search as randomly selecting the target subgraph first and
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Fig. 22. Synthetic: Extra Nodes - SS. 

Fig. 23. Facebook: Extra Nodes - SS. 

Fig. 24. Slashdot: Extra Nodes - SS. 

Fig. 25. Gowalla: Extra Nodes - SS. 

 

 

 

 

 

 

 

 

Fig. 26. Brightkite: Extra Nodes - SS. 

Fig. 27. Facebook: Queries - Landmark. 

Fig. 28. Slashdot: Queries - Landmark. 

Fig. 29. Gowalla: Queries - Landmark. 
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then randomly choosing a node to query from the subgraph. There-

fore, we name it DoubleRandom. 

In terms of the queries as displayed in Figs. 27–31 , BFS per-

forms much worse than BalancedRealD and DoubleRandom, which

is caused by the implementation of BFS. Specifically, if a high de-

gree node is visited, soon the search will visit all of its neigh-

bors. Therefore, very likely, the search will get stuck with one

subgraph, causing the unbalance. For DoubleRandom, as we men-

tioned earlier, the subgraph selection predominates the node selec-
ion. Therefore, DoubleRandom also gives other subgraphs a chance

o target, so it performs better than BFS. Another observation from

he figures is that BalancedRealD issued less queries than Dou-

leRandom did. 

For the extra nodes discovered from the offline search, as

howed in Figs. 32–36 , BalancedRealD requires less extra nodes

han DoubleRandom does. For BFS, as displayed in Fig. 15 , in most

f the experiments on real-world data sets, BFS failed to achieve

he connectivity of targets in the online search. Therefore, the re-
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Fig. 30. Brightkite: Queries - Landmark. 

Fig. 31. Synthetic: Queries - Landmark. 

Fig. 32. Synthetic: Extra Nodes - Landmark. 

Fig. 33. Facebook: Extra Nodes - Landmark. 
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Fig. 34. Slashdot: Extra Nodes - Landmark. 

Fig. 35. Gowalla: Extra Nodes - Landmark. 

Fig. 36. Brightkite: Extra Nodes - Landmark. 
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ults of BFS only came from the successful online search. The per-

ormance of BalancedRealD is even better than the Central except

or the Gowalla data set. 

. Discussion about target reachability 

In our work, we assumed that all target nodes are reachable in

he OSN, so the worst case in our online searching is to visit all
odes in the graph to achieve the connectivity of targets. There-

ore, we preprocessed the real-world data sets by extracting the

argest connected component to ensure the reachability of the tar-

ets before conducting online searching. However, in real-world

SNs, it could happen that the targets are not connected, although

he chance may be slim, as nodes are connected well in online so-

ial networks [24] . Therefore, we hope to terminate the searching

oon if it is highly likely that the targets are not reachable, so that

e will not waste too much query resource. 

From our experimental study, we realized that the number of

ueries issued in the online searching with BMS is about two times

f the number of targets. Therefore, we set 10 times of the num-

er of targets as the query threshold to terminate UMS. Actually,

e can use BMS to relieve the assumption of graph connectivity.

pecifically, after issuing a certain number of queries (as thresh-

ld), if the targets could not achieve connectivity, we can claim

hat the targets are not reachable or the cost to discover their con-

ectivity is too high. Such threshold should be determined by the

uery cost a user could afford. 
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7. Related work 

7.1. Search in social networks 

Some attention has been paid to efficiently searching in a social

network graph. [27] studied the searching on network graphs with

power-law link distributions, containing a few nodes with very

high degree and many with low degree. They proposed a number

of local search strategies that utilize high degree nodes in power-

law graphs. They also noticed that high connectivity nodes play the

important role of hubs in communication and networking, which

is exploited in designing efficient search algorithms. One of their

proposed algorithms follows degree sequence. Specifically, at each

step of searching, a neighboring node with a degree higher than

the current node itself is selected for visiting so that a highest de-

gree node will be reached quickly. Once a highest degree node is

visited, an non-visited node of approximately second highest de-

gree will be chosen. By following this degree sequence, one can

reach a target node very quickly. In the paper [26] , the same au-

thors also addressed how to find a shortest path between a pair

of nodes solely depending on local view on social networks. Their

heuristic strategy also prioritizes high degree node in searching by

virtue of the fact in our social community that if a person knows

so many people, then he is more likely to know the target as well.

Thus, nodes of high degrees are found important in searching so-

cial networks. Additionally, the authors in [31,32,39] discussed how

to collect data from OSNs by crawling/sampling so as to analyze

properties of social networks, such as topological properties. 

Although our LMSD problem is also relevant to searching in so-

cial networks, it differs from the literature aforementioned. Specif-

ically, rather than looking for a shortest path between a pair of

nodes, we are more interested in the connectivity of a target group

of nodes, usually more than two. Apparently, if we solely leverage

on the high-degree nodes to find the shortest path for any pair of

targeted nodes, the community including all the shortest paths will

ensure the connectivity of the targeted nodes, thus LMSD problem

being solved. However, the searching cost will be quite consider-

able. Therefore, we are motivated to design more efficient algo-

rithms to solve the LMSD problem. 

7.2. Subgraph connectivity 

Our subgraph detection problem is relevant to the subgraph

connectivity in the domain of graph mining. [14] and [15] pro-

poses solutions for finding a subgraph that connects a set of query

nodes in a graph, where the proximity between nodes is defined

depending on the global topology of the graph. Specifically, they

extracted subgraphs including nodes as close to the query nodes

as possible, where the closeness is quantified by the similarity

measure between two nodes. In its subsequent work, [16] rede-

fined the proximity measures based on “cycle-free effective con-

ductance” (cfec) and proposed some algorithms for optimizing the

cfec measure. Another work [40] suggests the concept of view-

point neighborhood analysis to identify neighbors of interest to a

particular source in a dynamically evolving network, associating

their measure with heat diffusion. [17] investigated the problem

of connecting query nodes in a context-aware framework. They

first employed modularity measure to partition the graph, and

then studied the connectivity in both intra-community and inter-

community levels. [18] proposed a random walk-based approach to

find informative subgraphs associated with a group of query nodes

in entity-relationship diagrams. Additionally, [19] addressed the

searching for the densest community containing all query nodes

with and without size constraint. Most recently, [41] examines the

Steiner Maximum-Connected Subgraph (SMCS) problem: given a

graph G and a set Q of query nodes, find the G’s induced subgraph
hat contains Q with the largest connectivity. Particularly, they ad-

ressed the minimal SMCS, which is the minimal subgraph of G

ith the maximum connectivity containing Q. 

The main difference between our proposed problem and the

bove line of research is two-fold: (1) While the existing work

ddressed subgraph connectivity with pre-known global topology,

hus from the perspective of social network “owner” (i.e., service

rovider), we instead consider the subgraph detection by a third-

arty analyst. (2) Unlike the traditional minimum subgraph detec-

ion problem the goal of which is to solely minimize the discov-

red subgraph which connects target nodes together, we are also

oncerned with the cost specified by the number of queries is-

ued in OSNs for subgraph discovery, as many OSN web sites limit

he number of web accesses per IP address per day to ensure the

orkload at OSN servers. 

.3. Local view based graph algorithms 

Some researchers also noticed the importance of conducting

raph mining or operation based on location information as often

ime the global information is not available. For example, [12] pro-

oses local graph clustering methods to find a cluster of nodes by

xploring a small region of the graph, which enable targeted clus-

ering around a given seed node and are faster than traditional

lobal graph clustering methods because their run time does not

epend on the size of the input graph. Additionally, [11] proposes

 local-search strategy, which searches in the neighborhood of a

ode to find the best community for the node. The difference be-

ween our work and the above work is that we consider a different

earch problem, and also, we particularly take advantage of topo-

ogical properties of social networks in design of search strategies. 

. Conclusion 

In this paper, we propose a problem of discovering a minimum

ubgraph covering a given group of nodes from the perspective of

hird-party analysts in OSNs, namely local-view based minimum

ubgraph detection (LMSD). Researching this problem has broad

pplications, for instance, finding a group of terrorists or mali-

ious users in OSNs. To solve this problem, we propose two search-

ng techniques, called Unbalanced Multiple-Subgraph (UMS) and

alanced Multiple-Subgraph (BMS), which are based on the well-

nown topological properties of social networks, including small-

orld phenomenon, power-law node degree distribution and the

ell-connectivity of nodes of high degree. 

Through experiments over large-scale real-world and synthetic

ata sets, we evaluate the performance of our proposed techniques.

he BMS technique performs better than UMS, which demonstrates

hat the well-connectivity property in social networks is not re-

tricted to nodes of high degree in OSNs, rather, the entire OSNs

re well connected, as any group of arbitrarily selected nodes can

each connectivity by a small number of node queries. Further-

ore, the design principle in BMS of searching from subgraphs of

ow degree shows great impact on the efficiency in solving the

MSD problem. Our work sheds light on leveraging social net-

ork topological properties to conduct search efficiently, which

ay improve some of the existing searching-related research work

n OSNs. 
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